Update File Names Based on New Parameters in Adjusted Hash Table
Source:R/update_from_hash_table.R
update_from_hash_table.Rd
This function updates names of existing results by re-hashing each set of
parameters with potentially updated values based on adjustments made to a
hash table (see ?create_hash_table
) by user. It loads RDS files based
on their existing hashes, compares to the corresponding entry in a hash table,
generates new hashes where needed, and saves the files with the new hashes.
The old files are deleted if their hashes differ from the new ones.
Usage
update_from_hash_table(
hash_table,
rds_folder,
hash_includes_timestamp = FALSE,
ignore_na = TRUE,
alphabetical_order = TRUE,
algo = "xxhash64"
)
Arguments
- hash_table
A file path to a modified hash table generated by
create_hash_table
.- rds_folder
A string specifying the directory containing the RDS files associated with the hash table.
- hash_includes_timestamp
Logical; if TRUE, timestamps are included in the hash generation.
- ignore_na
Logical; if TRUE, NA values are ignored during hash generation.
- alphabetical_order
Logical; if TRUE, parameters are sorted alphabetically before hash generation.
- algo
Character string specifying the hashing algorithm to use. Default is
"xxhash64"
. See?digest
Value
The function does not return a value but saves updated RDS files and deletes old files as needed.
Examples
## Setup
tmp_dir <- file.path(tempdir(), "example")
dir.create(tmp_dir)
## Save objects
obj1 <- rnorm(1000)
obj2 <- data.frame(
x = runif(100),
y = "something",
z = rep(c(TRUE, FALSE), 50)
)
obj3 <- list(obj1, obj2)
params1 <- list(
distribution = "normal",
other_params = list(param1 = TRUE, param2 = 1, param3 = NA)
)
params2 <- list(
distribution = "uniform",
other_params = list(param1 = FALSE, param2 = 2, param3 = "1", param4 = 4)
)
params3 <- list(
distribution = "composite",
other_params = list(param1 = TRUE, param2 = 3, param3 = 1)
)
save_objects(tmp_dir, obj1, params1)
save_objects(tmp_dir, obj2, params2)
save_objects(tmp_dir, obj3, params3)
## Create hash table
create_hash_table(tmp_dir, save_path = file.path(tmp_dir, "hash_table.csv"))
#> distribution other_params[[param1]] other_params[[param2]]
#> 1 uniform FALSE 2
#> 2 composite TRUE 3
#> 3 normal TRUE 1
#> other_params[[param3]] other_params[[param4]]
#> 1 1 4
#> 2 1 <NA>
#> 3 <NA> <NA>
#> script_name hash
#> 1 4aaef0ca-7936-4076-b370-27ac49c18337 181c74ea91113c0c
#> 2 4aaef0ca-7936-4076-b370-27ac49c18337 3a21c1fc17d5f68a
#> 3 4aaef0ca-7936-4076-b370-27ac49c18337 5964241557faff5a
## Read in hash table, make a change, and save
hash_table <- read.csv(file.path(tmp_dir, "hash_table.csv"))
hash_table$distribution <- "something different"
write.csv(hash_table, file.path(tmp_dir, "hash_table.csv"))
## See file names before change
list.files(tmp_dir)
#> [1] "181c74ea91113c0c.rds" "181c74ea91113c0c_parameters.rds"
#> [3] "3a21c1fc17d5f68a.rds" "3a21c1fc17d5f68a_parameters.rds"
#> [5] "5964241557faff5a.rds" "5964241557faff5a_parameters.rds"
#> [7] "hash_table.csv"
update_from_hash_table(
hash_table = file.path(tmp_dir, "hash_table.csv"),
rds_folder = tmp_dir
)
#> New names:
#> • `` -> `...1`
#>
#> Updating distribution in parameters_list: uniform -> something different
#>
#>
#>
#>
#> Renamed 181c74ea91113c0c.rds -> d5c78d84b1763bf9.rds; updated parameters saved.
#>
#> Updating distribution in parameters_list: composite -> something different
#>
#>
#>
#> Renamed 3a21c1fc17d5f68a.rds -> 170003d58b98db1b.rds; updated parameters saved.
#>
#> Updating distribution in parameters_list: normal -> something different
#>
#>
#> Renamed 5964241557faff5a.rds -> 98ebac62f38a571e.rds; updated parameters saved.
## See difference to before running update_hash_table()
list.files(tmp_dir)
#> [1] "170003d58b98db1b.rds" "170003d58b98db1b_parameters.rds"
#> [3] "98ebac62f38a571e.rds" "98ebac62f38a571e_parameters.rds"
#> [5] "d5c78d84b1763bf9.rds" "d5c78d84b1763bf9_parameters.rds"
#> [7] "hash_table.csv"
## Cleanup
unlink(tmp_dir, recursive = TRUE)